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PRELIMINARY INVESTIGATION O F  TBE HANDLING QUALITIES O F  A 

l?EHICI;E I N  A S- LUNAR GRAVITATIONAL FlXLD 

By Peter C.  Boisseau, Robert 0. Schade, 
Robert A. Champine, and Henry C.  Elkins 

Langley Re search Center 

SUMMARY 

A f l i gh t - t e s t  investigation has been conducted i n  connection with the  
development of a lunar landing simulator t o  provide some preliminary informa- 
t i on  concerning the handling qua l i t i e s  of a tethered manned lunar-landing vehi- 
c l e  operating i n  a simulated lunar gravi ta t ional  f i e l d .  Proportional-type con- 
t r o l s  were used; no a r t i f i c i a l  s tab i l iza t ion  was used during t h i s  investigation; 
and the results of the investigation a re  based en t i r e ly  on p i l o t s '  opinions. 
The p i lo t ing  task  w a s  v isual  hovering. 
f i e l d  was considered t o  be well  represented by the servocontrol system employed 
t o  maintain five-sixth of the weight of the vehicle and p i l o t .  The arrangement 
of the  p i l o t ' s  controls was good and t h e  control s ens i t i v i ty  was harmonious. 
Under these conditions the  vehicle could be maneuvered f a i r l y  eas i ly  with 
reaction-jet  controls, and the  control power required i n  pi tch,  r o l l ,  and yaw 
w a s  found t o  be somewhat higher than tha t  required by helicopters and by the 
AGARD requirements f o r  VTOL a i r c r a f t .  
required f o r  l i nea r  acceleration of the vehicle than fo r  acceleration of he l i -  
copters and VTOL airplanes,  but f o r  the s m a l l  maneuvers used i n  these tests 
this large r a t i o  of angle t o  acceleration w a s  not par t icu lar ly  bothersome t o  
the  p i l o t .  Height control of the  vehicle with a vertical-acceleration capa- 
b i l i t y  of only 0.06g and no vertical-velocity damping was considered t o  be 
unsatisfactory f o r  normal operation. 

The e f fec t  of a lunar gravi ta t ional  

Larger p i tch  and bank angles were 

INTRODUCTION 

I n  the  development of a lunar landing simulator a t  t he  NASA Langley 
Research Center, a simplified mockup of the suspension system and f l i g h t  
vehicle were b u i l t  and tes ted  t o  check some of the  ideas and systems t o  be 
incorporated i n  the fu l l - sca le  simulator. I n  the  process of performing t h i s  
work some preliminary information on the  handling qua l i t i e s  of a manned lunar 
landing vehicle operating i n  a simulated lunar gravi ta t ional  f i e l d  w a s  
obtained; the  present report  presents the preliminary results of these handling 
qua l i t i es .  
the p i lo t .  

The test  vehicle w a s  a lightweight open framework which carried 
It w a s  equipped w i t h  conventional helicopter-type p i l o t  controls 



which provided r o l l ,  pitch,  yaw, and a l t i t ude  control by means of compressed- 
a i r  jets. I n  order t o  simulate f l i g h t  i n  the  lunar gravi ta t ional  f i e ld ,  f ive-  
s ix ths  of the  weight of the  vehicle and of the p i l o t  were supported by an over- 
head cable which incorporated a servocontrol system f o r  controll ing the  amount 
of weight supported, and one-sixth of the weight w a s  supported by a compressed- 
a i r  j e t  which a l so  provided height control. 
vehicle i n  the simulated lunar gravi ta t ional  f i e l d  were determined on the  basis 
of the  p i l o t s '  opinions fo r  various values of control power f o r  the performance 
of the  maneuvers possible i n  the l imited operating area available.  
tests were made without s t a b i l i t y  augmentation - wbich might be considered as 
the manual reversion condition i n  the case of f a i lu re  of t he  s t a b i l i t y  augmen- 
t a t ion  system. 

The handling qua l i t i es  of t h i s  

All the  

Related work on the  handling-qualities requirements of lunar landing vehi- 
c les  i s  reported i n  references 1 and 2. Reference 1 presents the results of a 
fixed-base simulator study, and reference 2 presents the r e su l t s  of some exper- 
imental work done with the X-14 j e t  VTOL airplane i n  which the airplane w a s  
flown along several  proposed lunar landing t r a j ec to r i e s .  

FLIGHT VEHICIZ 

A drawing and photograph of the vehicle a re  presented i n  f igures  1 and 2, 
respectively. 
plywood platform t o  which were attached f l ight-control  levers  and a seat f o r  
the p i lo t .  
cable a simple parallelogram suspension system was used. 
freedom of t r ave l  i n  p i tch  and r o l l  a t  the vehicle attachment points and the 
upper end of the  parallelogram had +loo of freedom i n  r o l l  and 180° of freedom 
i n  yaw. The air-supply hoses gave some re s t r a in t  t o  the yawing 
motions of the vehicle since they were attached t o  the  ends of the crossbar 
which yawed with the vehicle. T h i s  r e s t r a in t  w a s  measured a s  0.18 ft-lb/deg of 
yaw with the hoses pressurized as i n  f l i g h t .  There was no corresponding 
r e s t r a in t  of the hoses on the pitching and ro l l ing  motions as long as the vehi- 
c l e  motions stayed within the +loo of freedom allowed by the pivots i n  the 
parallelogram suspension system since the pivots were below the point a t  which 
the hoses were attached t o  the vehicle. 

The vehicle was constructed of aluminum a l loy  and had a 3/8-inch 

I n  order t o  provide an attachment point f o r  the overhead suspension 
The system had +loo 

(See f i g .  1.) 

The vehicle had a main thrus t  ( l i f t i n g )  j e t  d i r ec t ly  beneath i t s  center of 
gravity and had reaction-control j e t s  fore  and a f t  of and t o  the  sides of i t s  
main body as indicated i n  f igure 1. 
and f o r  the reaction-jet  controls w a s  provided by f lex ib le  a i r  hoses which fed 
in to  a small plenum chamber located d i rec t lybe low the center of gravity of 
the vehicle and attached t o  the  bottom of the plywood platform. The thrus t  
valve for  controll ing the thrus t  of the main l i f t  j e t  w a s  attached t o  the 
plenum chamber and a i r  was furnished t o  the reaction-control valves from the 
plenum chamber by three f lex ib le  a i r  hoses. 
vehicle had zero damping i n  pitch,  roll, and climb; however, there  w a s  a small 
amount of damping i n  yaw due t o  the a i r  hoses. 

Compressed a i r  f o r  the main l i f t i n g  jet 

For a l l  p rac t ica l  purposes the 

(See f ig s .  2 and 3 . )  
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The p i l o t  controls on t h e  vehicle were s i m i l a r  t o  those of a helicopter.  
The control system was en t i r e ly  manual, and no a r t i f i c i a l  s tabi-  (See f i g .  1.) 

l i za t ion  was provided. 
s t i ck  between t h e  p i l o t ' s  legs,  yaw control w a s  applied with conventional rud- 
der  pedals, and thrus t  w a s  controlled with a lever operated by the  p i l o t ' s  l e f t  
hand (s imilar  t o  the  col lect ive p i tch  lever  of a hel icopter) .  
s t i ck  had s . 8  inches of fore-and-aft t r ave l  f o r  p i tch  control and k7.6 inches 
of sideways t r a v e l  f o r  r o l l  control. The s t i ck  w a s  mechanically connected t o  
nonbleed proportional type valves which had two exhaust ports.  
por t s  f o r  the p i tch  control valve were connected a t  the  front and rear  of the  
vehlcle by f lex ib le  hoses t o  short lengths of metal tubing which exhausted 
downward and acted as reaction-control nozzles. The r o l l  valve was connected 
i n  a similar manner t o  reaction j e t s  located on each side of the vehicle. 
a control was applied i n  e i the r  p i tch  or  r o l l ,  one exhaust port on the valve 
opened and provided compressed a i r  t o  one of the control nozzles t o  provide a 
pitching o r  ro l l ing  moment i n  the desired direct ion proportional t o  the  control 
s t i ck  deflection. The input t o  the  ve r t i ca l  motion due t o  a p i tch  or  r o l l  con- 
t r o l  w a s  considered t o  be negligible and did not present any problems t o  the 
p i l o t s  when t h e  controls were applied. The rudder pedals were pivoted near t he  
heel  of t he  p i l o t ' s  foot and had a t r ave l  of +180 which corresponded t o  a 
l inear  motion of about +2 inches of the b a l l  of the foot .  The pedals were 
mechanically connected t o  a valve of the same type as the pitch- and r o l l -  
control valves. But, since the  yaw-control j e t s  were located below the center 
of gravity of the vehicle, the yaw-control j e t s  were connected i n  pa i r s  i n  such 
a manner t h a t  a couple w a s  produced when yaw control w a s  applied, and thus 
eliminated any induced pitching moments. To accomplish t h i s  e f fec t ,  each l i n e  
leading off of the two yaw valve exhaust ports  had a "tee" inserted i n  the  l i n e  
and then the two l i n e s  leading off  the t e e  were directed t o  opposite sides of 
the vehicle and one l i n e  connected t o  a reaction j e t  facing forward w h i l e  the  
opposite l i n e  connected t o  a reaction j e t  facing rearward. The control effec- 
t iveness,  or the control moment produced by a given s t l c k  or  pedal deflection, 
could be changed as a ground adjustable feature by changing the distance of the  
individual control j e t s  from the  center of gravity of the vehicle. 

Pi tch and r o l l  control were applied with a control 

The control 

The exhaust 

When 

The vehicle weighed 175 pounds and the p i l o t  weighed 183 pounds f o r  a 
t o t a l  weight of 360 pounds. 
about : 

The moments of i n e r t i a  including the p i l o t  were 

Pitch, slug-ft2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16.5 
ROU, siug-ft2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13.2 
Yaw, slug-& . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27.1 

T h i s  value of yawing moment of i n e r t i a  includes the moment of i n e r t i a  of the 
par t  of the  air-supply hoses tha t  swung with the vehicle as it rotated i n  yaw 
and w a s  actual ly  measured by swinging the  vehicle i n  yaw on the  flight-test 
setup with the  hoses attached and pressurized t o  the pressure used i n  f l i g h t .  
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TEST EQUIPMENT AND SETUP 

A sketch i l l u s t r a t i n g  the t e s t  setup i s  shown i n  figure 3. The vehicle 
was suspended from an overhead cable attached t o  a hydraulically driven servo- 
controlled winch which allowed v e r t i c a l  freedom of movement. This servocontro; 
system maintained a constant tension i n  the  cable equal t o  five-sixths of the  
combined weight of the  vehicle and p i l o t  and thus simulated the moon's gravi- 
t a t i o n a l  p u l l  which i s  one-sixth of t h a t  of the ear th .  
of t h i s  cable control system is  given i n  the  appendix. Support f o r  the 
remaining one-sixth of the  weight plus the  addi t ional  force required f o r  ver- 
t i c a l  maneuvers was provided by the  downwardly directed j e t  controlled by the  
p i l o t .  It was considered important t ha t  the  supporting cable remain v e r t i c a l  
a s  the  vehicle t rans la ted  horizontally i n  order t o  minimize any pendulum 
r e s t r a i n t  e f f ec t s  of the  cable on the motions of the vehicle.  The system used 
t o  keep the  cable v e r t i c a l  a t  a l l  times i s  shown i n  f igure 3. In  t h i s  system 
the  vehicle support cable went through a ring 30 f e e t  above the f loor ,  and this 
r ing  could be moved horizontally anywhere i n  a 10-foot square by cables moved 
by air-driven winches. These winches were controlled by operators t o  move the  
r ing i n  the  t raverse  cables t o  keep the  vehicle support cable ve r t i ca l  a s  the  
vehicle moved around i n  the tes t  area.  This t raverse  system allowed the p i l o t  
t o  f l y  the vehicle i n  a pat tern approximating a 10-foot square w i t b u t  appre- 
c iable  extraneous cable e f fec ts .  

A detailed description 

The a i r  f o r  the  main thrus t  jet  and a t t i t u d e  control jets was supplied 
through f l ex ib l e  p l a s t i c  hoses which were suspended from the ce i l ing  of t he  
t e s t  area and attached t o  a crossbar on the  suspension cable above the sensor 
f o r  the servocontrol system. The test  setup was operated i n  one of the  return 
passages of the  Langley fu l l - sca le  tunnel, which gave a test area about 50 f e e t  
long and 50 f e e t  wide w i t h  a 65-foot-high cei l ing.  
t i o n  of the  exhaust a i r  from the  compressed-air jets w a s  negligible, mainly 
because of the large s ize  of t he  t e s t  area, and a l so  because a l l  f l i g h t s  were- 
made a t  l e a s t  6 f e e t  o r  higher above the  f loo r  of the tes t  area.  

The e f f ec t s  of recircula- 

TESTS 

For a l l  t e s t s  the vehicle w a s  hung from the  suspension cable, the servo- 
control system was turned on i n  an open-loop mode t o  assume six-sixths o r  all 
of the weight, the  manual brake w a s  released on the cable drum (see f i g .  3) , 
the  p i l o t  then applied ju s t  enoughthrust  f o r  hovering f l i gh t ,  and then the 
servocontrol system w a s  switched t o  a f ive-s ixth of the weight regulating sys- 
t e m .  
th rus t  o r  a t t i t u d e  control, the  operators of t he  two winches of the cable t r a -  
versing system shown i n  f igure 3 would observe the  motion of the suspension 
cable and apply control t o  the traversing system i n  order t o  keep the suspen- 
sion cable ve r t i ca l .  The normal duration of a par t icu lar  f l i g h t  was about 
3 minutes. To terminate a f l i gh t ,  the  manual brake w a s  applied t o  the cable 
drum, the servocontrol system was switched of f ,  and the p i l o t  cut the main air  
je t .  

If the  p i l o t  wished t o  maneuver the vehicle, he would apply the proper 
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The flight investigation was conducted i n  two par ts .  The f i r s t  par t  w a s  
conducted before the cable traversing system w a s  ins ta l led .  These t e s t s  con- 
s i s ted  mainly of an evaluation of the height control because of the r e s t r a in t  
of the support cable on the other motions of the vehicle. The second par t  of 
the investigation was conducted with the cable-traversing system ins ta l led  and 
operating and consisted of an evaluation of the  r o l l ,  yaw, and p i tch  controls 
f o r  both steady hovering f l i g h t  and f o r  the l imited t rans la t iona l  maneuvers 
possible within the 10-foot-square maneuver area. 

The resu l t s  of the investigation a re  based en t i r e ly  on the  p i l o t s '  opin- 
Two research p i l o t s  par t ic ipated ions of the cont ro l lab i l i ty  of the vehicle. 

i n  the investigation, both of whom had extensive experience i n  propeller and 
jet a i r c r a f t  and i n  helicopter and VTOL research a i r c r a f t .  

A few static-force t e s t s  were made t o  determine the  thrust available f o r  
the reaction-jet  controls. These t e s t s  were made with the  hovering th rus t  jet  
producing 55 pounds of thrust t o  simulate hovering f l i g h t ,  and the  r e su l t s  a r e  
presented i n  f igure 4. From the s ta t ic-force t e s t  r e su l t s  and the  moments of 
i n e r t i a  of the vehicle,  it w a s  possible t o  calculate the angular accelerations 
i n  pitch,  ro l l ,  and yaw presented i n  t ab le  I. 

RESULTS AND DISCUSSION 

General Comments 

The p i lo t ing  t a s k  has a very important e f f ec t  on the r e su l t s  of the inves- 
t igat ion;  therefore, it should be clear ly  understood what the pi lot ing task  
w a s .  I n  the  present tests, the p i l o t  performed three tasks,  a l l  of which would 
normally be c lass i f ied  as par t  of the general v i sua l  hovering task. 
tasks  were: (1) t o  maintain steady hovering f l i g h t ,  (2) t o  res tore  the  vehicle 
t o  steady hovering f l i g h t  a f t e r  disturbances, and ( 3 )  t o  perform deliberate 
t rans la t iona l  maneuvers (both horizontal and ve r t i ca l )  within the limits per- 
mitted by the t e s t  setup. 

These 

Before proceeding with the r e su l t s  of the f l i g h t  investigation, a few of 
the  p i l o t s '  comments concerning the flight vehicle should be presented. The 
p i l o t s  considered t h a t  the flight control system used as such t o  f l y  the  lunar 
vehicle w a s  sa t i s fac tory  and, i n  general, the arrangement of the p i l o t ' s  con- 
t r o l s  w a s  good and the control s ens i t i v i ty  w a s  harmonious. I n  some prelimi- 
nary f l i g h t  t e s t s ,  it w a s  found that the control system had an excessive dead 
spot and excessive control f r i c t ion .  The control system w a s  consequently 
reworked t o  minimize these factors .  It w a s  not possible t o  eliminate com- 
p le te ly  the dead spot i n  the  a i r  valve used f o r  controll ing the  flow t o  the  
control j e t s ,  but it w a s  reduced t o  the values shown i n  f igure  4; and these 
values were considered t o  be acceptable by the p i l o t s  on the  bas i s  of t h e i r  
f l i g h t  tests of t h e  vehicle. The ac tua l  values of s t i ck  and pedal forces  and 
control system f r i c t i o n  were not measured, but it w a s  apparent t ha t  every 
attempt must be made t o  keep any f r i c t i o n  i n  the control system t o  a minimum, 
par t icu lar ly  i n  pitch,  r o l l ,  and height control. The f r i c t i o n  i n  the control 
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system w a s  considered t o  be of an acceptable l eve l  by the p i l o t s  a f t e r  the 
system had been reworked. 
parallelogram support system and vehicle w a s  too r e s t r i c t ive  (*loo t rave l )  and 
should have been la rger  t o  allow greater p i tch  and r o l l  angles fo r  greater 
t rans la t iona l  accelerations. 

The p i l o t s  f e l t  tha t  the  gimbal t r ave l  between the 

With a vehicle as small as t h a t  of the present investigation, the motion 
of the  p i l o t  r e l a t ive  t o  the machine can have an important e f fec t  on the 
motions of the vehicle. 
f a r  a s  possible, the seat  was provided with a back which wrapped well around 
the  side of the p i l o t ' s  body, and t h e  p i l o t  was strapped i n  t i g h t l y  with a 
shoulder harness. 

Consequently, t o  prevent movements of the p i l o t  inso- 

Height Control 

The p i l o t s  f e l t  t ha t  the e f fec t  of a lunar gravi ta t ional  f i e l d  was prob- 
ably well  represented by the servocontrol e lectronics  system employed t o  main- 
t a i n  five-sixth of the weight of the vehicle since they could not detect  any 
e f f ec t s  of the hydraulic system such as l a g  or  overshoot even when thrust  con- 
t r o l  w a s  changed rapidly. The vehicle had only enough excess thrus t  available 
t o  produce an upward acceleration of 2.0 ft /sec2, or  about O.O6g, as measured 
from f igure 5 which shows a time his tory of the r a t e  of climb following an 
abrupt application of f u l l  th rus t .  
i t y  with the  thrus t  shut off completely w a s ,  of course , 1/6 g. The thrust con- 
t r o l  available w a s  found by the p i lo t  t o  be adequate f o r  smooth steady hovering 
fl ight,  but was considered t o  be too weak t o  be sa t i s fac tory  fo r  effect ing 
rapid changes i n  height and f o r  checking modest r a t e s  of descent. 
inadequate f o r  maintaining height precisely during rapid t rans la t iona l  maneu- 
vers when the  vehicle had t o  be t i l t e d  t o  appreciable angles. 
opinion ra t ing  assigned t o  the height control, as shown i n  t e s t  1 of t ab le  I 
was 4, by using the Cooper p i l o t  opinion ra t ing  system described i n  tab le  11. 
This r e su l t  i s  i n  general agreement with the r e su l t s  of references 3 and 4, 
which a l so  indicate tha t  the  height control was unsatisfactory fo r  the case of 
t h i s  low value of height control power where there  was no vertical-velocity 
damping. 

The maximum downward acceleration capabil- 

It also was 

The overal l  p i lo t  

Pitch, Roll, and Yaw Control 

The p i l o t  w a s  very conscious of the la rger  bank angles required t o  start 
o r  stop l inear  t rans la t iona l  motions i n  the  simulated lunar gravi ta t ional  f i e l d  
i n  comparison with t h e  bank angles of j e t  VTOL a i r c r a f t  i n  the ea r th ' s  gravita- 
t i ona l  f ie ld ;  however, f o r  the small maneuvers used i n  these t e s t s  this la rger  
r a t i o  of angle t o  acceleration w a s  not par t icu lar ly  bothersome. These la rger  
bank angles a re  the  resu l t  of the  f a c t  tha t  the thrus t  required t o  support a 
given mass i s  only one-sixth a s  great i n  the  lunar gravi ta t ional  environment as 
i n  an ear th  gravi ta t ional  environment, and t h a t  t h i s  smaller th rus t  must be 
t i l t e d  about six times as f a r  t o  produce a given t rans la t iona l  acceleration of 
the  mass. 
l a t ion  with the traversing system employed. I n  fac t ,  when maneuvers were made 

I n  general, it was not very d i f f i c u l t  t o  f l y  the vehicle i n  t r a n s -  
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slowly and steadily,  the cable t ranslat ion system w a s  good. When rapid trans- 
l a t iona l  motions were made, however, the p i l o t s  could f e e l  the manual trans- 
l a t i o n  system tending t o  l ag  o r  overshoot. 
was not operating a t  a l l ,  t he  support cable was found t o  have very large 
e f f ec t s  on the pitching and ro l l ing  character is t ics  of the  vehicle.  
the p i l o t  w a s  simply attempting t o  hover steadily,  d i rec t ly  beneath the cable 
attachment point, the restoring forces provided by the cable as a resu l t  of 
t rans la t iona l  motions had a deI'inite s tab i l iz ing  e f f ec t  and made the vehicle 
much eas ie r  t o  f l y .  And second, i f  the p i l o t  attempted t o  make t rans la t iona l  
maneuvers, he found tha t  he was seriously hampered by the cable r e s t r a in t  and 
the motions tha t  he could perform were very l imited and were grea t ly  affected 
by the cable. The cable t rans la t ion  system w a s  therefore considered an essen- 
t i a l  par t  of t he  system f o r  evaluation of the p i tch  and r o l l  control. 

When the  cable t rans la t ing  system 

F i r s t ,  i f  

The r e su l t s  of the  investigation of the pitch, r o l l ,  and yaw control a re  
shown i n  tab le  I with the Cooper ra t ing  scale described i n  table 11. With the 
m a x i m u m  available control moments f o r  a l l  controls (pi tch,  r o l l ,  and yaw) (see 
tab le  I, t e s t  2),  it was possible t o  f l y  the vehicle f a i r l y  well  w h i l e  exe- 
cuting maneuvers. For t h i s  f l i g h t  condition the calculated angular accelera- 
t i ons  i n  pitch,  r o l l ,  and yaw were 0.79, 0.65, and 1.13 rad/sec2/inch of s t i ck  
o r  pedal t rave l ,  respectively. With t h i s  amount of control the p i lo t  consid- 
ered t h e  p i tch  control as almost optimum and assigned a ra t ing  of 1.5, and he 
considered the r o l l  and yaw control a s  marginally sa t i s fac tory  and assigned a 
ra t ing  of 3.5. 

A s  the control power w a s  reduced, the fac tor  t ha t  became most apparent was 
the increased time it took t o  t r ans l a t e  over a given distance and stop. 
reason f o r  t h i s  increase i n  t i m e  w a s  t h a t  the reduced control effectiveness 
required a longer time t o  p i tch  o r  bank the  vehicle t o  develop a t rans la t iona l  
acceleration, and it also required a longer time t o  p i tch  or  r o l l  the vehicle 
t o  stop the acceleration once it w a s  s tar ted.  A second reason was t h a t  t he  
p i l o t  tended t o  worry about overshoot when executing maneuvers with the  reduced 
control effectiveness and tended t o  be very cautious i n  t h e  use of control. 
The m i n i m u m  control power (see tab le  I, t e s t  3 )  that the p i l o t s  considered m a r -  
g ina l ly  sat isfactory fo r  f ly ing  the vehicle produced angular accelerations i n  
pitch,  r o l l ,  and yaw of 0.54, 0.65, and 1.13 rad/sec2/inch of s t ick  o r  pedal 
deflection, respectively. With this amount of control effectiveness, the p i lo t  
w a s  able t o  f l y  s p i r a l  maneuvers with both ve r t i ca l  and horizontal  t rans la t ion  
without too much d i f f i c u l t y  and t o  execute these maneuvers with some degree of 
precision. When the  control moments were reduced i n  t e s t  4 t o  about 50 percent 
of the values required t o  give the  marginally acceptable ra t ings  of t e s t  3, the  
vehicle could be flown smoothly and eas i ly  f o r  steady hovering f l i g h t ,  but the 
control of the  vehicle w a s  not sa t i s fac tory  i f  the p i l o t  attempted rapid maneu- 
vers  i n  t ranslat ion.  A s  t he  control moments were fur ther  reduced i n  t e s t  5 t o  
about 25 percent of the values required t o  give the marginally acceptable 
ra t ings of t e s t  3, the  control of the  vehicle became almost unacceptable fo r  
even mild t rans la t iona l  maneuvers. 

One 

The vehicle had unusually large s t i c k  t r ave l s  available,  but i n  analyzing 
the  movies taken during the  investigation, it w a s  noted t h a t  i n  no case did the 
p i l o t  use more than one-half the available t r a v e l  i n  any normal steady f lying 
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o r  maneuvering. 
was when he used m a x i m  deflection i n  pulse inputs t o  see how much control 
was available and this w a s  done only f o r  the  two lowest control power condi- 
t ions .  For the yaw control the pedal t r ave l  w a s  r e l a t ive ly  small (k2 inches) 
and the p i l o t  frequently used the m a x i "  deflection available when t ry ing  t o  
yaw the  vehicle rapidly. T h i s  experience indicates  that the  amount of t o t a l  
control power required i s  tha t  which would provide an  acceleration of about 
1.8 rad/sec2 i n  pitch,  2.3 rad/sec2 i n  r o l l ,  and mre than 1.9 rad/sec2 i n  yaw. 

The only t i m e  he ever exceeded one-half the available t r ave l  

1-ATION OF RESULTS 

Two questions natural ly  arise regarding the  interpretat ion of the r e su l t s  
of the present tests. One question i s  how t o  scale the  r e su l t s  t o  account f o r  
differences i n  vehicle s i ze ;  and the  other question i s  how the  present r e su l t s  
compare with helicopter and VTOL airplane experience. 

A scaling fac tor  i s  included i n  both helicopter and V/STOL airplane 
requirements such as those of reference 5 which specify t h e  control power 

required as a function of This s ize  f ac to r  has been proven 
t o  be f a i r l y  accurate f o r  helicopters from about 2,500 t o  30,OOO pounds but has 
never been checked f o r  vehicles nearly as s m a l l  as the present research vehi- 
c l e  (360 pounds). 
required f o r  sa t i s fac tory  behavior i n  the present t e s t s  with the requirements 
of reference 5 f o r  a 360-pound vehicle. 
V/STOL a i r c r a f t  requirements was calculated by using the weight of the vehicle 
i n  the  ear th  gravi ta t ional  f i e l d  since weight i s  used i n  the  requirements as an 
indication of the geometric s ize  of the q i r c ra f t  and since the requirements 
were set up i n  terms of ear th  w e i g h t  as the  indication of s ize .  

l/(W + l000)~/3. 

The following tab le  shows a comparison of the control power 

The control power required by the  

- .  

Control s ens i t i v i ty  f o r  pitch,  rad/sec2/in. . . . 
Control s ens i t i v i ty  f o r  r o l l ,  rad/sec2/in. . . . 
Total control fo r  pi tch,  rad/sec2 . . . . . . . . 
Total control f o r  r o l l ,  rad/sec2 . . . . . . . . 
Total control f o r  yaw, rad/sec2 . . . . . . . . . 

AGARD 

requirements 
V/STOL 

( r e f .  5) 

0.26 
0.40 
1.04 
1.20 
1.05 

- .. 

Present 
research 
vehicle 

0.54 
0.65 

1.8 
2.3 
1.9 

It should be noted that the yaw control w a s  not compared on the  basis of 
s ens i t i v i ty  i n  the  tab le  because it w a s  found t h a t  the p i l o t  frequently h i t  the 
stops on the rudder pedals and it i s  believed, on the  bas i s  of past  experience, 
t ha t  when t h i s  condition occurs, the p i l o t ' s  ra t ing  i s  more influenced by the  
t o t a l  control power available than by the sens i t i v i ty  a t  smller control 
deflection. 
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The data i n  the foregoing table indicate tha t  the  present research vehicle 
required from 60 t o  100 percent more control than i s  indicated as being 
required by the AGARD V/STOL requirements. It seemed possible t h a t  this lack 
of agreement m i g h t  have resulted from the  f ac t  t h a t  the  s ize  scaling fac tor  
m i g h t  not be exactly applicable a t  the very small s ize  of the  present vehicle 
since it has never been checked i n  t h i s  s ize  range. Consequently, another com- 
parison w a s  made using unpublished r e su l t s  of f l i g h t  t e s t s  of a very s m a l l  
helicopter ( 3 0  pounds gross weight) f o r  d i rec t  comparison with the r e su l t s  
obtained w i t h  the  present research vehicle. 
shown i n  f igure 6. The comparison must be made on the basis of l e s s  than sat- 
i s fac tory  control s ens i t i v i ty  i n  p i tch  and r o l l  since the control s ens i t i v i ty  
of the  helicopter w a s  somewhat weak and was not varied. 
present vehicle and the  small helicopter could not be compared since the  he l i -  
copter had f a r  too much yaw control f o r  sat isfactory behavior, and the  present 
vehicle w a s  not tes ted  i n  t h i s  range of control sens i t iv i ty .  

The r e su l t s  of t h i s  comparison a r e  

The yaw control of the 

The comparison presented i n  f igure 6 shows t ha t  the  present research vehi- 
c l e  required 25 percent more control s ens i t i v i ty  i n  pi tch and 75 percent more 
control sens i t iv i ty  i n  r o l l  than the s m a l l  helicopter t o  obtain the s a m e  p i l o t  
ra t ings.  This resu l t  i s  i n  general agreement with the previous comparison of 
the  present r e su l t s  with the  V/STOL requirements of reference 5 which showed 
that the present vehicle required 60 t o  100 percent more control than w a s  indi-  
cated by the  requirements. P i lo t  ra t ings  a re  not a very exact quantity f o r  
close comparison, but the r e su l t s  of both of these comparisons seemed t o  indi-  
cate  that the  present jet-powered vehicle operating i n  a simulated lunar gravi- 
t a t i o n a l  environment did require somewhat more control power than i s  required 
by helicopters and the requirements of reference 5 f o r  V/STOL a i r c r a f t .  

COMPARISON WITB RELATFlD STUDIES 

It should be noted t h a t  i n  the lunar-landing simulation conducted with the  
X-14 j e t  VTOL airplane,  and reported i n  reference 2, it w a s  concluded t h a t  the  
control power required fo r  the simulated lunar landings w a s  only 20 percent of 
t h a t  which had been found t o  be necessary f o r  normal hovering f l i g h t  a s  a VTOL 
airplane.  The difference between tha t  resu l t  and the  r e su l t s  of the present 
investigation seems t o  be one of difference i n  p i lo t ing  task.  I n  the invest i -  
gation of reference 2 the  p i l o t  made an approach d i r ec t ly  t o  the landing s i t e  
and landed there without any last-minute maneuvering t o  select  an exact spot 
f o r  touchdown. I n  the  present investigation the  task w a s  the  same as that of a 
VTOL a i r c r a f t  i n  hovering which i n  e f f ec t  assumes tha t  the p i l o t  may not know 
whether he wants t o  land on a given spot u n t i l  he ge ts  there, and t h a t  he may 
then want t o  move quicMy t o  a more sui table  nearby spot. 

The re su l t s  of the present investigation a re  i n  agreement with the  r e su l t s  
of t he  fixed-base simulator study of reference 1 f o r  the lowest value of con- 
t r o l  s ens i t i v i ty  used i n  the  present tests where the r e su l t s  of both investiga- 
t ions  showed p i l o t  ra t ings of about 6, which i s  almost completely unsatisfac- 
tory.  A t  higher values of control sens i t iv i ty ,  however, the r e su l t s  of t he  two 
investigations diverge. The r e su l t s  of reference 1 show that, as the  control 
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sens i t i v i ty  i s  increased, the handling qua l i t i e s  become worse, evidently 
because of oversensit ivity of the control, and t h a t  no p i l o t  ra t ings be t t e r  
than 6 are  obtained a t  any value of control sens i t iv i ty .  
the r e su l t s  of the present investigation show tha t ,  as the  control s ens i t i v i ty  
w a s  increased from the  lowest value, the handling qua l i t i e s  became progres- 
s ively b e t t e r  u n t i l  they became sat isfactory a t  the highest values of control 
sens i t iv i ty  tes ted.  
control sens i t iv i ty ,  shown by the  present investigation, i s  i n  agreement with 
the trend of results reported i n  reference 6. A possible explanation of t he  
discrepancy between the r e su l t s  of the  present investigation and those of the 
fixed-base simulation a t  the higher control s e n s i t i v i t i e s  i s  that the p i l o t  of 
the simulator tended t o  overcontrol with r e l a t ive ly  modest control sens i t iv i -  
t i e s  because of an inadequate display of information t o  the  p i l o t  and because 
of the lack of motion cues resul t ing from the fixed-base nature of the 
simulator. 

On the other hand, 

This trend of improving handling qua l i t i e s  with increasing 

CONCLUDING FENARKS 

A br ie f  investigation has been conducted t o  provide some preliminary 
information concerning the  handling qua l i t i e s  of a manned lunar-landing vehicle 
operating i n  a simulated lunar gravi ta t ional  f i e l d .  Proportional-type controls 
were used; no a r t i f i c i a l  s tab i l iza t ion  w a s  used i n  the investigation; and the 
r e su l t s  of t h e  investigation are based en t i r e ly  on p i l o t s '  opinions. 
pi lot ing task was v isua l  hovering. The e f fec t  of a lunar gravi ta t ional  f i e l d  
was considered t o  be well represented by the  servocontrol system employed t o  
maintain f ive-s ixth of the  weight of the vehicle because the p i l o t s  could not 
detect  any e f f ec t s  of the  hydraulic system such as lag  o r  overshoot even when 
thrus t  control w a s  changed rapidly.  The arrangement of t he  p i l o t ' s  controls 
w a s  good and the control s ens i t i v i ty  w a s  harmonious. Under these conditions, 
the vehicle could be maneuvered f a i r l y  eas i ly  with reaction-jet  controls, and 
the  m i n i m u m  control s ens i t i v i t i e s  which gave marginal sat isfactory controlla- 
b i l i t y  were found t o  be somewhat higher than those required by helicopters and 
by the AGARD requirements f o r  V/STOL a i r c r a f t .  
p i tch  and bank angles were required fo r  l inear  acceleration of the vehicle than 
i s  the case i n  the ear th ' s  gravi ta t ional  f i e l d  with helicopters and VTOL air- 
planes. For the s m a l l  maneuvers used i n  these t e s t s ,  however, this larger  
r a t i o  of angle t o  acceleration w a s  not par t icu lar ly  bothersome t o  the p i l o t .  
Height control of the vehicle, which had a maximum upward acceleration capabil- 
i t y  of only 0.06g and no ver t ical-veloci ty  damping, was considered t o  be unsat- 
isfactory fo r  normal operation. 

The 

A s  would be expected, larger  

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., November 5,  1964. 
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APPENDIX 

DESCRIPTION O F  VEHICLE SUPPORT CABLE SYSTEM 

The object of the vehicle support cable system w a s  t o  support f ive-s ixth 
of the weight of the vehicle under the varying input disturbance conditions 
imposed by motions of t he  vehicle and the p i l o t ' s  manipulation of the thrus t  
control. A schematic diagram of the mechanical par t  of the system i s  shown i n  
f igure 7 and a block diagram of the  control system i s  shown i n  f igure 8. A s  
shown i n  f igure 7, the  vehicle w a s  supported by a cable through a s t r a in  gage, 
which served as a sensor; and the cable w a s  payed i n  o r  out by a winch driven 
by a servocontrolled motor t o  maintain a tension of f ive-s ixth of the vehicle 
weight, o r  300 pounds, i n  the  cable. Because of the varying nature of the 
input disturbances, a hydraulic motor was chosen t o  actuate the system since it 
had the highest torque-to-inertia r a t i o  and the f a s t e s t  response obtainable i n  
a small package. 

I n  the  regulator system a voltage corresponding t o  300 pounds of tension 
on t h i s  s t r a in  gage was applied t o  the regulator input a s  the reference. The 
servo loop was closed as shown i n  f igure 8. 
control system with a command input of 300 pounds ca l l ing  fo r  an output of 
300 pounds. This diagram o r  analysis does not include a l l  the dynamics of the 
system. Cable-lateral-motion dynamics, the winch-drive dynamics, and the  
e f fec t  of hydraulic compression and l i n e  expansion were l e f t  out. These f r e -  
quencies were f i l t e r e d  out of t he  system. The diagram a s  shown contains only 
the  motor dynamics plus the cable spring and mass. The system w a s  analyzed and 
drawn i n  terms of acceleration. The disturbance inputs were assumed t o  be pure 
force . 

This system, as shown, i s  a servo- 

The equations f o r  the system can be derived i n  t e r a s  of two dynamic loops: 
t he  acceleration regulator and the damper. This derivation makes it eas ie r  t o  
analyze the e f fec ts  of each. The closed-loop expression f o r  the acceleration 
regulator i s  

By using two integrators  ( K l / s  and K2/s) ,  

output - - K1K$4 
Input s ( T s  + 1) + K,K,-,Kb 

By using one integrator  ( K I P ) ,  

output - K1K4 
Input 

- 
T s  + 1 + K1K4 

where the input i s  the  a i r  j e t  force and the  output 

(e) 

i s  the  acceleration and 
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KlJK.2 in tegrator  gains 

damper amplifier gain K3 

K 4  hydraulic motor gain 

strain-gage gain K5 

S Laplace operator 

T motor time constant 

T 1 = T + K K K  3 4 3  

It can be seen from a comparison of  these two equations tha t  a much f a s t e r  
t r a n s i t  response can be obtained from the  quadratic than from the  f i r s t -order  
lag.  

The closed-loop expression f o r  the damper i s  

output - K 4 s  - 
(T1 + K 4  s + 1 ) Input 

The cable-vehicle longitudinal dynamics can be eliminated from the mathe- 
matics of t h i s  system because of the nature and point of disturbance input.  
The closed-loop system does not include the  dynamics of t he  cable-vehicle 
longitudinal motion since the spring i s  a d i rec t  t ransmit ter  of the output 
force of the  motor. I n  this case the motor never has t o  accelerate the vehicle 
mass. 

This system, as shown, could not be landed on a hard surface. The vehicle 
could have landed only i f  upon touchdown the double integrator  system was 
switched open. 
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TABLE I. - FLIGHT-CONTROL COMBINATIONS USED I N  FLYING LUNAR 

Control Radiusa, 1 i n .  

[For a l l  t e s t s ,  acceleration capabi l i ty  upward 0.06g 
downward O.l7g] 

P i lo t  ra t ing  Acceleration, 
rad/secZ/in. 

~ ~~ 

VEHICI;E 

r Pitch 
Rol l  
Yaw I Height I 

Height-control t e s t  sb 

28.3 
28.3 
22.2 

0 *33 
. 4 0  
.64 

I 

Pitch-, roll-, and yaw-control t e s t s  

Pi tch 
R o l l  
Yaw 

Pitch 
R o l l  
Yaw 

Pi tch 
Rol l  
Yaw 

Pi tch 
Roll 
Yaw 

66.88 
45.38 
39.38 

45.38 
45.38 
39.38 

26.13 
19.88 
19.38 

14.38 

14.63 
10.63 

0.79 
.65 

1.13 

0.54 
.65 

1.13 

0.31 
-29 
..56 

0.17 
* 15 
.42 

1.5 
3.5 
3.5 

3.5 
3.5 
3 - 5  

5 
5 
5 

6 
6 
6 

aDistance of control j e t s  from vehicle center of gravity.  
bCable t rans la t iona l  system not operating. 
CPoor simulation because of r e s t r a in t  of support cable; no rat ing given. 
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TABU 11.- PILOT OPIKCON RATING SYSTEM 

condit ion1 
8 Unacceptable - dangerous N o  No 
9 Unacceptable - uncontrollable No N o  

Catastrophic 10 Motions possibly violent enough No N o  
t o  prevent p i lo t  escape 

Adjective Numerical 
ra t ing rat ing Description Can be 1 

landed 

Primary 
mission 

accomplished 

Normal Satisfactory 1 Excellent, includes optimum Yes Yes 
operat ion 2 Good, pleasant t o  f l y  Yes Ye 6 

unpleasant characterist ics Yes Yes 

Emergency Unsatisfactory 4 . Acceptable , but with unpleasant Ye s Yes 

5 Unacceptable f o r  normal operation Doubtful Ye s 
6 Acceptable f o r  emergency condition Doubtful Yes 

Satisfactory, but with some mildly 3 

operat ion characterist ics 

only1 



i- !- 7200- I ,-- 
A 

1 & Sensor 

Figure L- Three-view drawing of t e s t  vehicle. A l l  dimensions a re  i n  inches. 
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Figure 2 . -  Photograph of test vehicle. L-62-1458 
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Figure 3. -  Sketch of f l i g h t - t e s t  setup f o r  lunar landing vehicle i n  return passage of 
fu l l - s ca l e  tunnel. A l l  dimensions a r e  i n  f e e t .  
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Figure 4.- Variation of control thrust  with control deflection. Main jet thrust ,  55 pounds. 
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Figure 4. - Continued. 
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Figure 4.- Concluded. 
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Figure 5.- Variation of r a t e  of climb with time f o r  an abrupt appl icat ion of maximum th rus t .  
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Figure 6.- Comparison of r e su l t s  from the present investigation with those from f l igh t  t e s t s  
of a small helicopter. 
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Figure 7.- Schematic of mechanical drive system. 
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Figure 8.- Block diagram of sewocontrol system. 
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